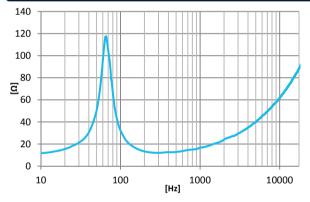


10MC500Nd

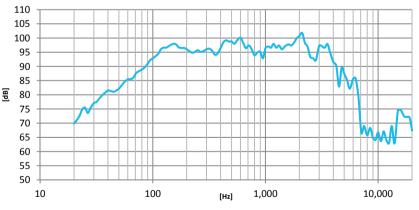
Sample Data Sheet Custom 10" Transducer 16Ω

TECHNICAL SPECIFICATIONS

Nominal diameter Rated impedance		250 mm	10 in 16 Ω
Minimum impedance			12.0 Ω
Power capacity ¹			TBD W _{AES}
Program power ²			TBD W
Sensitivity	97	dB 1W@	0 1m @ Z _n
Frequency range		75	- 5000 Hz
Voice coil diameter		63.5 mm	2.5 in
Air gap height			10 mm
Voice coil length		:	19.5 mm
Bl factor			21.8 N/A
Moving mass			0.042 kg
Winding material			Copper
Spider material		P	olycotton
Magnet material		Ne	odymium
Cone material			Paper
Frame material		Die cast a	aluminum


MOUNTING INFORMATION

Overall diameter	261 mm	10.3 in
Bolt circle diameter	244 mm	9.6 in
Baffle cutout diameter	228 mm	9.0 in
Depth	125 mm	4.9 in
Net weight	3.1 kg	6.8 lb


THIELE-SMALL PARAMETERS³

Resonant frequency, f _s	67 Hz
D.C. Voice coil resistance, R _e	9.4 Ω
Mechanical Quality Factor, Q _{ms}	4.6
Electrical Quality Factor, Q _{es}	0.35
Total Quality Factor, Q _{ts}	0.33
Equivalent Air Volume to Cms, V _{as}	23.1
Mechanical Compliance, C _{ms}	133 μm/N
Mechanical Resistance, R _{ms}	3.9 kg/s
Efficiency, η _o	1.9 %
Effective Surface Area, S _D	0.035 m ²
Maximum Displacement, X _{max} ⁴	7.6 mm
Voice Coil Inductance, L _e	1.3 mH

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m.

Notes:

This datasheet is done with the measurements of a laboratory prototype. Small differences may appear once the driver is transferred to the

production line and manufactured in big quantities. Please refer to the serial datasheet for the definitive information of the average production.

¹ Power capacity (AES2-1984 r2003) has been estimated in this particular case for the present sample.

² Program power is defined as power capacity +3dB.

³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a

velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

⁴ The Xmax is calculated as (Lvc - Hag)/2 + (Hag/3,5), where Lvc is the voice coil length and Hag is the air gap height.